257 research outputs found

    Genetic variation in early fitness traits across European populations of silver birch (Betula pendula)

    Get PDF
    Given that the ecological niche of tree species is typically narrower for earlier life stages, intraspecific genetic variation at early fitness traits may greatly influence the adaptive response of tree populations to changing environmental conditions. In this study, we evaluated genetic variation in early fitness traits among 12 populations of Betula pendula from a wide latitudinal range in Europe (41-55 degrees N). We first conducted a chamber experiment to test for population differences in germination and the effect of pre-chilling treatment on seed dormancy release. We then established three common gardens spread across the species latitudinal range in order to evaluate levels of quantitative genetic variation and genotype-by-environment interaction at different early life traits. Our results showed significant variation in chamber germination rates among populations (0-60 %), with southern populations exhibiting lower germination. Pre-chilling treatments did not generally improve germination success. Population seedling emergence rates in the field were correlated with chamber germination rates, though being an order of magnitude lower, with an average ranging from 0 to 1.3 % across gardens. Highly significant variation was found in field emergence rates among populations, and between seed-crop years within populations, but not among families within populations. Populations differed in seedling height, diameter, slenderness and budburst date, with significant among-family variation. Population latitude was positively associated with chamber germination rate and with seedling emergence rate in one of the central field sites. Overall, genetic, environmental and demographic factors seem to influence the observed high levels of variation in early fitness traits among B. pendula populations. Our results suggest limited regeneration capacity for the study species under drier conditions, but further field trials with sufficient replication over environments and seed crops will improve our understanding of its vulnerability to climate change

    O-Glycosylation of snails

    Get PDF
    The glycosylation abilities of snails deserve attention, because snail species serve as intermediate hosts in the developmental cycles of some human and cattle parasites. In analogy to many other host-pathogen relations, the glycosylation of snail proteins may likewise contribute to these host-parasite interactions. Here we present an overview on the O-glycan structures of 8 different snails (land and water snails, with or without shell): Arion lusitanicus, Achatina fulica, Biomphalaria glabrata, Cepaea hortensis, Clea helena, Helix pomatia, Limax maximus and Planorbarius corneus. The O-glycans were released from the purified snail proteins by β-elimination. Further analysis was carried out by liquid chromatography coupled to electrospray ionization mass spectrometry and – for the main structures – by gas chromatography/mass spectrometry. Snail O-glycans are built from the four monosaccharide constituents: N-acetylgalactosamine, galactose, mannose and fucose. An additional modification is a methylation of the hexoses. The common trisaccharide core structure was determined in Arion lusitanicus to be N-acetylgalactosamine linked to the protein elongated by two 4-O-methylated galactose residues. Further elongations by methylated and unmethylated galactose and mannose residues and/or fucose are present. The typical snail O-glycan structures are different to those so far described. Similar to snail N-glycan structures they display methylated hexose residues

    The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse

    Get PDF
    Anthropogenic activity is driving population declines and extinctions of large-bodied, fruit-eating animals worldwide. Loss of these frugivores is expected to trigger negative cascading effects on plant populations if remnant species fail to replace the seed dispersal services provided by the extinct frugivores. A collapse of seed dispersal may not only affect plant demography (i.e., lack of recruitment), but should also supress gene flow via seed dispersal. Yet little empirical data still exist demonstrating the genetic consequences of defaunation for animal-dispersed plant species. Here, we first document a significant reduction of seed dispersal distances along a gradient of human-driven defaunation, with increasing loss of large- and medium-bodied frugivores. We then show that local plant neighbourhoods have higher genetic similarity and smaller effective population sizes when large seed dispersers become extinct (i.e., only small frugivores remain) or are even partially downgraded (i.e., medium-sized frugivores providing less efficient seed dispersal). Our results demonstrate that preservation of large frugivores is crucial to maintain functional seed dispersal services and their associated genetic imprints, a central conservation target. Early signals of reduced dispersal distances that accompany the Anthropogenic defaunation forecast multiple, cascading effects on plant populations

    Ultrafast entangling gates between nuclear spins using photo-excited triplet states

    Full text link
    The representation of information within the spins of electrons and nuclei has been powerful in the ongoing development of quantum computers. Although nuclear spins are advantageous as quantum bits (qubits) due to their long coherence lifetimes (exceeding seconds), they exhibit very slow spin interactions and have weak polarisation. A coupled electron spin can be used to polarise the nuclear spin and create fast single-qubit gates, however, the permanent presence of electron spins is a source of nuclear decoherence. Here we show how a transient electron spin, arising from the optically excited triplet state of C60, can be used to hyperpolarise, manipulate and measure two nearby nuclear spins. Implementing a scheme which uses the spinor nature of the electron, we performed an entangling gate in hundreds of nanoseconds: five orders of magnitude faster than the liquid-state J coupling. This approach can be widely applied to systems comprising an electron spin coupled to multiple nuclear spins, such as NV centres, while the successful use of a transient electron spin motivates the design of new molecules able to exploit photo-excited triplet states.Comment: 5 pages, 3 figure

    Molecular Characterization of the Region 7q22.1 in Splenic Marginal Zone Lymphomas

    Get PDF
    Splenic marginal zone lymphomas (SMZL) are an uncommon type of B-cell non-Hodgkin's lymphoma (NHL-B) in which no specific chromosomal translocations have been described. In contrast, the most frequent cytogenetic abnormality is the loss of the long arm of chromosome 7 (7q). Previous reports have located this loss in the 7q32 region. In order to better characterize the genomic imbalances in SMZL, molecular studies were carried out in 73 patients with SMZL. To gain insight into the mapping at 7q a tiling array was also used. The results confirmed the loss of 7q as the most frequent change. In addition, several abnormalities, including 4q22.1, 1q21.3–q22, 6q25.3, 20q13.33, 3q28, 2q23.3–q24.1 and 17p13, were also present. A loss of 7q22.1 at 99925039–101348479 bp was observed in half of the cases. The region of 7q22.1 has not previously been characterised in SMZL. Our results confirmed the presence of a new region of loss on chromosome 7 in these NHL

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles

    CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition.</p> <p>Methods</p> <p>Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies.</p> <p>Results</p> <p>In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).</p> <p>Conclusions</p> <p>CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.</p

    Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Mycobacteria in Routine Clinical Practice

    Get PDF
    Background: Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed. Methodology: We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 10 5 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25M. avium and 12 non-tuberculosis clinical isolates with identification scores $2 within 2.5 hours. Conclusions: Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heatinactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories i
    corecore